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Abstract

The purpose of this chapter is to consider some applications of Bayesian decision

theory to intelligent tutoring systems. In particular, it will be indicated how the

problem of adapting the appropriate amount of instruction to the changing nature

of student's capabilities during the learning process can be situated within the

general framework of Bayesian decision theory. Two basic elements of this

approach will be used to improve instructional decision making in intelligent

tutoring systems. First, it is argued that in many decision-making situtions the

linear loss model is a realistic representation of the losses actually incurred.

Second, it is shown that the psychometric model relating observed test scores to

the true level of functioning can be represented by Kelley's regression line from

classical test theory. Optimal decision rules will be derived using these two

features.
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Introduction

During the last two decades, adaptive instructional systems have been studied by

many researchers (e.g., Atkinson, 1976; De Diana & Vos, 1988; Gegg-Harrison,

1992; Hambleton, 1974; Hansen, Ross & Rakow, 1977; Holland, 1977; van der

Linden & Vos, 1994; Vos, 1990, 1991, 1992, 1993, 1994a, 1994c, 1995; Vos &

De Diana, 1987). Although different authors have defined the term "adaptive

instruction" in a different way, most agree that it denotes the use of strategies to

adapt instructional treatments to the changing nature of student abilities and

characteristics during the learning process (see, e.g., Lancia, 1976).

In the context of computer-based instruction (CBI), adaptive instructional

programs are often qualified as intelligent tutoring systems (1TSs). Examples of

such systems can be found in Cape 11 and Dannenberg (1993) and De Haan and

Oppenhuizen (1994). Tennyson, Christensen, and Park (1984) have described a

computer-based adaptive instructional system denoted as the Minnesota Adaptive

Instructional System (MAIS). The authors consider MAIS as an ITS, because it

exhibits some machine intelligence, as demonstrated by its ability to improve

decision making over the history of the system as a function of accumulated

information about previous students. In the literature, successful research projects

on MAIS have been reported (e.g., Park & Tennyson, 1980; Tennyson, Tennyson

& Rothen, 1980).

Initial work on MAIS began as an attempt to design an adaptive

instructional strategy for concept-learning (Tennyson, 1975). Concept-learning is

the process in w'uch subjects learn to categorize objects, processes or events. A

6
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model for the instruction for the learning of concepts is described by Merrill and

Tennyson (1977). These authors suppose that the learning of concepts consists of

two phases. The first one .s the formation of a prototype (i.e., formation of

conceptual knowledge) and the second is the acquisition of classificatory skills

(i.e., development of procedural knowledge). From this assumption, an

instructional design model for the learning of concepts has been developed. This

model has two basic components: content structure variables and instructional

design variables. Furthermore, an important role in the model is played by

expository examples (statement form), i.e. (non)examples, which organize the

content in propositional format and interrogatory examples (question form), i.e.

(non) examples, which organize the content in interrogatory format (see

Tennyson and Cocchiarella, 1986, for a complete review of the theory of

concept-learning).

In MAIS, eight basic instructional design variables directly related to

specific learning processes are distinguished. In order to adapt instruction to

individual learner differences (aptitudes, prior knowledge) and learning needs

(amount and sequence of instruction), these variables are controlled by an ITS.

Three out of these eight variables are directly managed by a computer-based

decision strategy, namely, amount of instruction, instructional time control, and

advisement on learning need. The functional operation of this strategy was related

to guidelines described by Novick and Lewis (1974).

Four empirically based adaptive instructional models have been reviewed

by Tennyson and Park (1984). The four models are Atkinson's mathematical

model, Ross's trajectory model, Ferguson's testing and branching model, and the

MAIS model. These four models vary in degree to which they use six

characteristics (initial diagnosis, sequential character, amount of instruction,
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sequence of instruction, instructional display time, and advisement on learning

need) identified as essential in an effective adaptive instmctional system. The

authors conclude that MAIS provides for a complete adaptive instructional model,

because all six defined characteristics of effective adaptive instruction are

integrated into this model.

The purpose of this paper is to review the application of the MAIS

decision procedure by Tennyson and his associates. First, it will be indicated how

this proct Jure can be situated within the general framework of Bayesian decision

theory (e.g., Ferguson, 1976; Lindgren, 1976), and what implicit assumptions

have to be made in doing so. Next, it will be demonstrated how the decision

component in MAIS can be improved by using other results from this

decision-theoretic approach. In particular, it will be indicated how two features of

the MAIS decision procedure can be improved by using other results from

decision theory. The first feature is to replace the assumed threshold loss function

in MAIS by a linear loss function. The second feature is Kelley's regression line

of classical test theory as the psychometric model relating observed test scores to

the true level of functioning instead of the binomial model assumed in MAIS.

We shall confine ourselves in this paper only to one of the three

instructional design variables directly managed by the decision component in

MAIS, namely selecting the appropriate amount of instruction in concept or

rule-learning situations. In MAIS, selecting the appropriate amount of instruction

can be interpreted as determining the optimal number of interrogatory examples.

Although the procedures advocated in this paper are demonstrated for

instructional decision making in MAIS, it should be emphasized that these

procedures are not limited to MAIS but, in principle, can be applied to decision

components in any arbitrary ITS. In the next section, it will be indicated how the

8
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problem of selecting the appropriate amount of instruction in MAIS can be

situated within the general framework of Bayesia% decision theory.

Adapting the Amount of Instruction

The derivation of an optimal strategy with respect to the number of interrogatory

examples requires an instructional problem be stated in a form amenable to a

Bayesian decision-theoretic analysis. In a Bayesian view of decision making,

there are two basic elements to any decision problem: a loss function describing

the loss l(ai,t) incurred when action ai is taken for the student whose true level of

functioning is t (0 5_ t 1), and a probability function or psychometric model,

f(xit), relating observed test scores x to student's true level of functioning t.

These basic elements have been related to decision problems in

educational testing by many authors (e.g., Atkinson, 1976; Huynh, 1980;

Swaminathan, Htunbleton. & Algina, 1975; van der Linden, 1990). As the use of

the decision component in MAIS refers to mastery testing, we shall discuss here

only the application of the basic elements to this problem.

It is assumed that, due to measurement and sampling errors, the true

level of functioning t is unknown. All that is known is the student's observed test

score x from a small sample of n interrogatory examples (x =

Furthermore, the following two action.s are available to the decision-maker:

advance a student (a l) to the next concept if his/her test score x exceeds a certain

cutting score xc on the observed test score scale X, and retain (ao) him/her

otherwise. Students with test scores x below the cutting score xc are provided

with additional expository examples. A new interrogatory example is then

generated. This procedure is applied sequentially until either mastery is attained

9
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or the pool of test items is exhausted.

The mastery decision problem can now be stated as choosing a value of

xc that, given the value of the criterion level tc, is optimal in some sense. The

criterion level tc E [0,1] - the minimum degree of student's true level of

functioning required - is set in advance by the decision maker. It is the

unreliability of the test that opens the possibility of the mastery decision problem

(Hambleton & Novick, 1973).

Generally speaking, a loss function specifies the total costs of all

possible decision outcomes. These costs concern all relevant psychological,

social, and economic consequences that the decision brings along. An example of

economic consequences is extra computer time associated with presenting

additional instructional materials. In MAIS, the loss function is supposed to be a

threshold function. The implicit choice of this function implies that the

"seriousness" of all possible consequences of the two available actions can be

summarized by four constants, one for each of the four possible decision

outcomes (see Table I).

Insert Table 1 about here

For convenience, and without loss of generality (e.g., Davis, Hickman & Novick,

1973), it is assumed in Table 1 that no losses occur for correct decisions.

Therefore, the losses for correct advance and retain decisions, i.e., 1 and 100,

can be set equal to zero.

In the decision component of MAIS, a loss ratio R must be specified. R

0
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refers to the relative losses for advancing a learner whose true level of

functioning is below tc and retaining one whose true level exceeds tc, or,

equivalently, the losses associated with a false advance compared to a false retain

decision. From Table 1 it can be seen that the loss ratio R equals 110/101 for all

values of t.

Finally, it is assumed that the psychometric model in MAIS, relating

observed test scores x to the true level of functioning t, can be represented by the

well-known binomial model:

'(x It) = (Ix') t x0(1-"-X. (I)

In a Bayesian procedure, a decision problem is solved by minimizing the

Bayes risk, which is minimal if for each x of X an action with smallest

posterior expected loss is chosen. The posterior expected loss is the expected loss

taken with respect to the posterior distribution of t.

It can be seen from the loss table that a decision rule minimizing

posterior expected loss is to advance a student whose test score x is such that

101Prob(T yx,n) > 110Prob(t < tclx,n), (2)

and to retain him/her otherwise. Since 101 > 0, this is equivalent to advancing a

student if

Prob(t tclx,n) R/(1+R), (3)

and retaining him/her otherwise. Proh(t tclx,n) denotes the probability of the

i 1
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student's true level of functioning equal to o; larger than te given a test score x

on a test of lengai n. In fact, this probability is one minus the cumulative

posterior distribution of i In MAIS, this quantity is called the "beta value" or

"operating level" (Tennyson, Christensen, & Park, 1984).

It should be noted that, as can be seen from the optimal decision rule,

the decision maker does not need to specify the values 110 and loi completely.

He needs only assess their ratio lio/loi. For assessing loss functions, most texts

on decision theory propose lottery methods (see, for example, Novick & Lindley,

1979; Vos, 1994b). Bat, in principle, any psychological scaling method can be

used.

In order to initiate the decision component in MAIS, three kinds of

parameters must be specified in advance. Beside the parameters te and R, a

probability distribution representing the prior knowledge about t must be

available. In MAIS, a beta distribution, B(a,13), is used as a prior distribution,

and a pretest score together with infonnation about other students is used to

specify its parameter values.

Keats and Lord (1962) have shown that simple moment estimators of a

and p, respectively, are given as

a + liPpre)llpre
p = -a + ti/ppre - n, (4)

where jive and ppre denote the mean and KR-21 reliability coefficient of the

test scores from the previous students, respectively, and n represents the number

of test items in the pretest. As an aside, it may be noted that if administering a

pretest is not possible for any reason, the prior distribution of a student can be

12



Applications of Bayesian Decision Theory

9

characterized by a uniform distribution on the interval from zero to one. In that

case, the parameters of the beta prior shocld be specified as a =.13 = 1. Also, the

prior distribution can be estimated on the initial period of instruction, for

intance, on the first four or six interrogatory examples (Tennyson, Christensen,

& Park, 1984).

From an application of Bayes' theorem, it follows that the posterior

distribution of t will again be a member of the beta family (the conjugacy

property). In fact, if the Prior distribution is B(a43) and the student's test score is

x from a test ot Jength n, then tne posterior distribution is B(a+x43+n-x). The

beta distribution has been extensively tabulated (e.g., Pearson, 1930). Tennyson

and Christensen (1986) use a nonlinear regression approach that fits the best

polynomial as an approximation of the beta distribution. Normal approximations

are also available (Johnson & Kotz, 1970, sect. 2.4.6). Using numerical

procedures for computing the incomplete beta function, a computer program

called BETA was developed in PASCAL to calculate the beta values for the

purpose of this paper. The program is avaiiable on request from the author.

The MAIS decision procedure for adapting the number of interrogatory

examples can now be stumnarized as follows: If a student's beta value exceeds

the quantity R/(1+R), (s)he is passed to the next concept. However, if his/her beta

value is below this quantity, his/her posterior distribution is used as a prior

distribution in a next cycle. A new interrogatory example is then generated. The

procedure is applied iteratively until either the beta value exceeds the quantity

R/(I+R) or all interrogatory examples have been presented. Notice that the

iterative updating of the beta values takes into account improvements in learning

while a straight percentage per number of items weights all responses equally.

Consequently, as the student makes increasingly correct answers in the latter part

13
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of instruction, those answers become weighted more than in the initial period of

instruction (Tennyson, Christensen, & Park, 1984).

In the MAIS decision procedure, it is assumed that the form of the loss

structure involved is a threshold function. Therefore, only the loss ratio R has to

be assessed empirically. In addition to the threshold loss function, however, more

realistic functions have been adopted in decision theory. One such function will

be considered below.

The Linear Loss Model

An obvious disadvantage of the threshold loss function is that it assumes constant

loss for students to the left or to the right of tc, no matter how large their

distance from tc For instance, a misclassified "true master" (see Table 1) with a

true level of functioning just above tc gives the same loss as a misclassified "true

master" with a true level far above tc. It Seems more realistic to suppose that for

misdassified "true masters" the loss is a monotonically decreasing function of t.

Moreover, as can be seen in Table 1, the threshold loss function shows a

"threshold" at the point tc, and this also seems unrealistic in many cases. In the

neighborhood of this point, the losses for correct and incorrect decisions

frequently change smoothly rather than abruptly.

In view of this, Mellenbergh and van der Linden (1981) proposed the

following linear loss function:

ho(t-tc) d°l(ai,() bi(tc-t) dl
for i = 0 (retain)
for i = I (advance),

14

(5)
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where bo, h1 > 0. The above defined function consists of a constant term and a

term proportional to the difference between the true level of functioning t and the

specified criterion level tc. The constant amount of loss, di (i = 0,1), can, for

example, represent the costs of testing. The condition bo, bi > 0 is equivalent to

the statement that for actions ao and al, loss is a strictly increasing and

decreasing function of the variable t, respectively. The parameters bi and di have

to be assessed empirically (e.g., Novick & Lindley, 1979; Vos, 1994b). Figure 1

displays an example of this function.

Insert Figure 1 about here

The linear loss function seems to be a realistic representation of the losses

actually incurred in many decision making situations. In a recent study, for

example, it was shown by van der Gaag, Mellenbergh, and van den Brink (1988)

that many empirical loss structures could be approximated satisfactory by linear

functions.

Since this paper is only meant to give a flavor of the possible

applications of Bayesian decision theory to ITSs, only the case do = di will be

considered in the linear loss function of (5). In other words, it will be assumed

that the amounts of constant loss, di, for both actions are equal, or there are no

constant losses at all (i.e., no costs of testing are involved). Confining ourselves

to this special case, the mathematical derivations given below will remain rather

simple. For the inure general and a bit more complicated case of do di, we

refer to Vos (1994b). It should he noted, however, that no fundamentally new

i5
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ideas are encountered in this more general case.

For the case of do = d1, it can easily be verified from (5) that the

decision rule that minimizes the posterior expected loss in case of a linear loss

function is to advance a student with test score x for which

E[tlx,n] tc, (6)

and to retain him/her otherwise. As can be seen from (6), under the assumption

of do = d1, there is no need to assess the parameters di and bi in adapting the

number of interrogatory examples. In this case, the optimal decision rule takes

the rather simple form of advancing a student if his/her expectation of the

posterior distribution of t is equ:I to or larger than the specified criterion level tc,

and to retain him/her otherwise. Following the same terminology as in the

threshold loss model, the expectation of the posterior distribution of t will be

denoted as the "linear value". So, a student is advanced in the threshold loss

model if his/her beta value exceeds the quantity R/(14-R) and is advanced in the

linear loss model if his/her linear value exceeds the criterion level tc.

Using the fact that the expectation of a beta distribution B(a41) is equal

to a/(a4-13), and thus, the posterior expectation equals (a+x)/(a-t-0-1-n), it follows

from (6) that a student is advanced if his/her test score x is such that

x tc(a+13+n) - a, (7)

and retained otherwise.

In MAIS, it is assumed that the fonn of the psychometric model relating

observed test scores to student's true level of functioning can be represented by

16
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the binomial model (Equation 1). In the next section, another psychometric model

frequently used in criterion-referenced testing will be considered.

Classical Test Model

The expectation of the posterior distribution, E[tlx,n], represents the regression of

t on x. A possible regression function is the linear regression function of classical

test theory (Lord & Novick, 1968):

E[tlx,n] = iPXX'x (1-PXX')I-IXVIL (8)

with px and pxx. being the mean and KR-21 reliability coefficient of X (i.e.,

the group to which the student belongs), respectively. Equation 8 is known as

Kelley's regression line. According to Lord and Novick (1968), Equation 8 is "an

interesting equation in that it expresses the estimate of the true level of

functioning as a weighted sum of two separate estimates - one based upon the

student's observed score, x, and, the other based upon the mean, px, of the

group to which s(he) belongs. If the test is highly reliable, much weight is given

to the test score and little to the group mean, and vice versa." (p.65)

Substituting (8) into (6), and solving for x gives the following optimal

decision rule

x Delx(PXX-1)-f-ntcYpXX'. (9)

Since 0 5_ pxx, 5_ 1, and, thus -1 5 pxx.-1 5 0, it follows from (9)

7



Applications of Bayesian Decision Theory

14

that ux and the optimal cutting score are related negatively. The higher the

average performance, the lower the optimal cutting score. Hard-working students

are rewarded by low cutting scores, while less hard-working students will just be

penalyzed and confronted with high cutting scores. This effect is the opposite of

what happens when norm-referenced standards are used (van der Linden, 1980).

They vary up and down with the performances of the examinees. Van der Linden

(1980) calls this effect a "regression from the mean".

It should be stressed that, as can be seen from (9), the optimal cutting

score, i.e., the nwnber of interrogatory examples to be administered to the

student, depends upon }Ix and PXX'. Hence, it follows that the decision

component in MAIS allows for an updating after each response to an

interrogatory example. This explains why, though the decisions for determining

the optimal number of interrogatory examples are made with respect to an

individual s ardent, the rules for the decisons are based on data from all students

taught by t le system in the past and, in doing so, are improved continuously. In

other words, instructional decision-making procedures for ITSs can be designed

in this way; that is, a system of rules improving itself over the history of the

system as a result of systematically using accumulated data from previous

students. The parameters of the model, ux and pvc, are updated each time a

student has finished his/her dialogue with the system.

Comparison of the Models

In this section, the threshold loss, linear loss, and classical test model will be

compared with each other. First, both the threshold and linear loss model will be
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compared with the classical test model. Next, the threshold and linear loss model

will be compared with each other.

As noted earlier, both the threshold and linear loss model do not take

test scores into account of the group to which the student belongs. Both models

were primarily designed for instructional decision making on the level of the

individual student. The classical test model, however, explicitly takes into account

both the student's observed test score and the mean of the group to which s(ale)

belongs, which is illustrated by the "regression from the mean" effect.

The "individual" models (i.e., the threshold and linear loss model),

however, explicitly take into account information about other students (so-called

"collateral" information) to specify the parameter values of a distribution function

representing the prior knowledge about the true level of functioning. In the case

of a beta distribution, 'as shown by Keats and Lord (1962), the estimates a and 13

of the prior distribution are given by (4). Inserting (4) into (7) results into

x IPpre(Ppre-1)+ntel/ppre. (10)

Comparing (9) and (10) with each other, it follows immediately that the

linear loss model and classical test model yield the same optimal cutting score if

Ppre = PX and Ppre PXX.; that is, if the means and KR-21 reliability

coefficients of the pretest scores and scores of the group to which the student

belongs are the same. Under the (realistic) assumption Ppre = PXX' = P and

using -1 p-1 0, it follows from (9) and (10) that the optimal cutting score in

the classical test model can be set lower than in the linear loss model if

fix > ppre, and vice versa. This makes sense, because this implies that the

student is rewarded for performing better than the average student from the

19
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"collateral" group. Using a normal approximation for the beta distribution and

applying a logistic transformation with scale parameter equal to 1.7 (e.g., Lord &

Novick, 1968, sect. 17.2), the same conclusion can easily be derived for the

threshold loss and classical test model (Vos, 1994b).

After having compared the threshold loss and linear loss model with the

classical test model, these two "individual" models will now be compared with

each other. Setting t equal to 0.7, the beta values (left-hand side of Expression

3) and linear values (left-hand side of Expression 6) were computed using the

program BETA. Since pretest information was available, a and 13 were estimated

from (4) with n = 10, 1yre , an Ppre8d = 0.8. The results of the computations=

for the threshold and linear loss model are given in Tables 2 and 3, respectively,

for 10 test items and different number correct scores.

Insert Table 2 about here

Insert Table 3 about here

As can be seen from (6), a student is advanced in the linear loss model

if the number correct score of his/her linear value exceeds tc = 0.7. In Table 3,

these values are indicated by an asteriks. Similarly, as can be seen from (3), a

student is advanced in the threshold loss model if his/her beta value exceeds the

quantity R/(14-1Z). Let us suppose that the relative losses associated with a false

20
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advance compared to a false retain decision are ,..:onsidered equally worse (i.e.,

110 = 131). This implies that R = lionot = 1, and, thus, R/(1+R) equals 0.5. In

Table 2, the values for which the number collect score exceeds the quantity

R/(1+R) = 0.5 are also indicated by an asteriks. Using the program BETA, in

Table 2 it is also indicated for which value of the loss ratio R, say Rc(0.7), both

models yield the same optimal cutting score xc if tc is set equal to 0.7. The

optimal cutting score 'cc for the linear loss model was derived from (7) for

tc = 0.7 and is depicted in Table 3.

Tables 2 and 3 indicate that with this choice of the loss ratio R, the

number correct score for which a student is granted mastery status does not differ

much in both models. Only if the number of items is equal to 9 a student needs

on t.. more item correct in the linear loss model than in the threshold loss model

for ')eing advanced. So, the linear loss model is somewhat more severe than the

threshold loss model in the case of R = 1.

This can also be concluded from examining the values of

because all these values are larger than 1. Hence, if it is required that a student is

advanced in both models with the same number correct score, then, the losses

associated with a false advance decision should be considered more worse than

the losses associated with a false retain decision. Since Table 2 shows that

Rc(0.7) can be lowered with increasing nwnber of items, however, both false

decisions become more and more equally worse with increasing values of n.

Of course, the values of R for which students are advanced with the

same number of correct score in both models depend upon the value of tc.

Therefore, in Table 2, these values of R are also displayed for tc = 0.6 and

tc = 0.8 denoted as Rc(0.6) and Rc(0.8), respectively. As can be concluded from

Table 2, the linear loss model becomes more and more severe than the threshold
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loss model for increasing values of tc, whereas for decreasing values of tc the

opposite happens.

Finally, it should be noted that for any choice of the loss ratio R and

criterion level tc, always a linear loss model can be found yielding the same

optimal cutting score by choosing appropriate values for the linear loss

parameters bi and di. Hence, the threshold loss model can be considered as a

special case of the linear loss model. In other words, the linear loss model offers

us a great deal of flexibility in designing the adaptive decision making procedure

in MAIS. In the program BETA, the optimal cutting scores xc in the linear loss

model and its associated Rc values can also be computed for the general case of

d d For this general case of the linear loss model, it is shown in Vos
C

(1994b) that a student is advanced to the next concept if his/her linear value

exceeds the t-coordinate of the intersection point of both loss lines from (5),

which is equal to Re(di-do)/(bo-f-bi)]. All results reported in this paper,

however, can be obtained by setting, in addition to bo, b1 > 0, do and di equal

to each other in the computer program BETA.

Concluding Remarks

In this paper it was indicated how the MAIS decision procedure could be

formalized within a Bayesian decision-theoretic framework. In fact, it turned out

that this decision procedure could be considered as a sequential mastery decision.

Moreover, it was argued that in many situations the assumed threshold

loss function in MAIS is an unrealistic representation of the losses actually

incurred. Instead, a linear loss function was proposed to meet the objections to

4 4
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threshold loss.

Further, Kelley's regression line of classical test theory was proposed as

the psychometric model relating observed test scores to the true level of

functioning. Using this psychometric model instead of the binomial model

assumed in MAIS, ISSs can be designed in which the determination of the

opthnal nwnber of interrogatory examples for an individual student is based on

data from all students taught by the system in the past.

Integrating these two features into MAIS, it might be expected that the

computer-based decision strategy in MAIS can be improved. Using computer

simulation and deriving theoretical implications, a critical comparison of the

models was carried out in order to validate these two extensions of MAIS. The

results of the computer simulations and theoretical implications indicated that

both extensions were realistic. That is, both extensions of MAIS are potentially

valuable and feasible for current ITS applications. Whether or not the proposed

linear loss model and the classical test model are, however, real improvements of

the present decision component in MAIS (in tenns of student performance on

posttests, learning time, and amount of instruction) must be decided on the basis

of empirical data.
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Table 1

Twofold Table for Threshold Loss Function

Decision

Advance

Retain

True level

t tc t < tc
(true master) (true nonmaster)

0 110

101 0
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Figure Caption

Figure I. Example of a Linear Loss Function.
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